Assessment Schedule - 2006

Calculus: Integrate functions and use integrals to solve problems (90636)

Evidence and Judgement Statements

	Achievement Criteria	Q.	Evidence	Code	Judgement	Sufficiency
	Integrate functions and use integrals	1a	$\frac{1}{3}\sec 3x + c$	A1	Or equivalent.	Achievement:
	to solve problems.	1b	$\frac{4}{5}e^{5x+2} + c$	A1	Or equivalent.	Four of Code A
		1c	$2x^{\frac{1}{2}} + 3x - 2\ln x + c$ $(2\ln kx \text{ or } \ln x^2 + c) \text{ for final piece}$	A1	Or equivalent. Accept without sign. Log x not accepted.	at least one A1 and one A2.
Achievement		2	Shaded area $= \frac{0.5}{2} [2 + 7 + 2(4 + 5 + 4 + 3 + 4)]$ $= 12.25 \text{ units}^2$	A2	Units not reqd. Or equivalent. One clearly indicated copying error of values in round brackets allowed.	
		3	Cat's distance travelled: $s = \int 3 - 3\sin 3t dt$ $= 3t + \cos 3t + c$ Assume when $t = 0$, $s = 0$, so $s = 3t + \cos 3t - 1$ When $t = 4$, $s = 11.8$ metres Or $\int_{0}^{4} (3 - 3\sin 3t) dt$ $= \left[3t + \cos 3t \right]_{0}^{4}$ $= 11.8 \text{ m}$	A1 Or A2	Must show integration. Units not reqd. Or equivalent. A1 for correct indefinite integral or A2 for correct distance. One copying error of sin3t allowed, but only if clearly written.	

	Achievement Criteria	Q.	Evidence	Code	Judgement	Sufficiency
Achievement with Merit	Use advanced integration techniques to find integrals and solve problems.	5	Let $u = x + 2$, then $x = u - 2$ and $\frac{dx}{du} = 1$ $\int \frac{x}{\sqrt{x+2}} dx$ $= \int \frac{u-2}{u^{\frac{1}{2}}} du$ $= \int u^{\frac{1}{2}} - 2u^{-\frac{1}{2}} du$ $= \frac{2}{3}u^{\frac{3}{2}} - 4u^{\frac{1}{2}} + c$ $= \frac{2}{3}(x+2)^{\frac{3}{2}} - 4(x+2)^{\frac{1}{2}} + c$ $\int_{1}^{5} \frac{3x-2}{x+4} dx$ $= \int_{1}^{5} 3 - \frac{14}{x+4} dx$ $= [3x-14 \ln x+4]_{1}^{5}$ $= 3.77 \text{ units}^{2}$ Volume $= \pi \int_{0}^{1.8} 2.25 - (y-0.3)^{2} dy$ $= \pi \left[2.25y - \frac{(y-0.3)^{3}}{3} \right]_{0}^{1.8} \text{ or }$ $\pi \left[2.16y - \frac{y^{3}}{3} + 0.3y^{2} \right]$	A1 M A1 M or A2	(if $u = \sqrt{x+2}$, A1 for $\frac{2}{3}u^3 - 4u + c$) another form of the integral is $\frac{2}{3}(\sqrt{x+2})(x-4) + c$ If done by parts, it is $\frac{1}{2x(x+2)^2} - \frac{4}{3}(x+2)^{\frac{3}{2}} + c$ Or equivalent. A1 for correct indefinite integral (if substitution of $u = x + 4$ used, A1 for $\left[3u - 14 \ln u \right]$) or A2 for 3.77. Or equivalent. Units not reqd. A1 for correct indefinite integral or A2 for 9.16. Or equivalent. Units not reqd.	Merit: Achievement plus Three of Code M or Four of Code M.
			$= 2.916\pi \text{ or } 9.16 \text{ m}^3$			

	7	Let $M =$ moisture content at time t $\frac{dM}{dt} = kM$ $\int \frac{1}{M} dM = \int k dt$ $\ln KM = kt$ $M = Ae^{kt} \text{ where } A = M_0$ When $t = 1$, $M = 0.5 M_0$ $0.5 M_0 = M_0 e^k$ $k = -0.69315 (= \ln 0.5)$ [if $t = 60$ is used, $k = -0.01155$ and $t = 398.6 \text{ min}$] $M = M_0 e^{-0.69315t}$ $0.01 = e^{-0.69315t}$ $t = 6.64 \text{ hours}$	M or A2	Must form differential equation (otherwise best possible result A2). Accept $M = Ae^{kt}$ without working. Must evaluate k . Or equivalent.
--	---	---	------------	--

	Achievement Criteria	Q.	Evidence	Code	Judgement	Sufficiency
Achievement with Excellence	Solve more complex integration problem(s).	8	$\frac{dV}{dt} = -kA$ where V is volume and A is surface area. From triangles: $\frac{w}{45} = \frac{h}{30}$, $w = \frac{3h}{2}$, $A = \frac{225h}{2} \text{ and } V = \frac{225}{4}h^2$ $\frac{dV}{dh} \cdot \frac{dh}{dt} = -kA$ $\frac{225h}{2} \frac{dh}{dt} = -k \frac{225h}{2}$ $\frac{dh}{dt} = -k$ $h = -kt + c$ $t = 0, h = 30, c = 30$ $h = 30 - kt$ $t = 5, h = 28, k = \frac{2}{5}$ $h = 0, t = 75$ Water evaporates completely after 75 days. OR $\frac{dV}{dt} = -kA$ Since $A = 15\sqrt{V}$, $\frac{dV}{dt} = -15kV$ $\int V^{-\frac{1}{2}} dV = \int -15k dt$ $2\sqrt{V} = -15kt + c$ When $t = 0, V = 50.625, c = 450$ When $t = 5, V = 44.100, k = 0.4$ $2\sqrt{V} = -6t + 450$ When $V = 0, t = 75$.	A M E	Accept any valid method. Accept minor arithmetic error. Or equivalent.	Excellence: Merit plus Code E.

Judgement Statement

Calculus: Integrate functions and use integrals to solve problems (90636)

Achievement	Achievement with Merit	Achievement with Excellence
Integrate functions and use integrals to solve problems.	Use advanced integration techniques to find integrals and solve problems.	Solve more complex integration problems(s).
4 × A including at least 1 × A1 and	Achievement plus	Merit <i>plus</i>
1 × A2	3 × M	1×E
	OR	
	4 × M	